6 resultados para isolation and purification

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nel 1997 venne isolata una popolazione cellulare con caratteristiche appartenenti a cellule endoteliali mature e a cellule progenitrici ; le cellule appartenenti a queste popolazione furono denominate EPCs (cellule endoteliali progenitrici circolanti) e fu messa in evidenza la loro capacità di dare origine a vasculogenesi postnatale. Lo scopo dello studio è stata la caratterizzazione di tale popolazione cellulare in termini biologici e la valutazione delle differenze delle EPCs in soggetti sani e nefropatici in emodialisi. È stata infine valutata l’eventuale capacità della Vitamina D di influenzare le capacità delle Late EPCs in termini di formazione di colonie in vitro e di attività anticalcifica in soggetti in insufficienza renale cronica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During my PhD,I have been develop an innovative technique to reproduce in vitro the 3D thymic microenvironment, to be used for growth and differentiation of thymocytes, and possible transplantation replacement in conditions of depressed thymic immune regulation. The work has been developed in the laboratory of Tissue Engineering at the University Hospital in Basel, Switzerland, under the tutorship of Prof.Ivan Martin. Since a number of studies have suggested that the 3D structure of the thymic microenvironment might play a key role in regulating the survival and functional competence of thymocytes, I’ve focused my effort on the isolation and purification of the extracellular matrix of the mouse thymus. Specifically, based on the assumption that TEC can favour the differentiation of pre-T lymphocytes, I’ve developed a specific decellularization protocol to obtain the intact, DNA-free extracellular matrix of the adult mouse thymus. Two different protocols satisfied the main characteristics of a decellularized matrix, according to qualitative and quantitative assays. In particular, the quantity of DNA was less than 10% in absolute value, no positive staining for cells was found and the 3D structure and composition of the ECM were maintained. In addition, I was able to prove that the decellularized matrixes were not cytotoxic for the cells themselves, and were able to increase expression of MHC II antigens compared to control cells grown in standard conditions. I was able to prove that TECs grow and proliferate up to ten days on top the decellularized matrix. After a complete characterization of the culture system, these innovative natural scaffolds could be used to improve the standard culture conditions of TEC, to study in vitro the action of different factors on their differentiation genes, and to test the ability of TECs to induce in vitro maturation of seeded T lymphocytes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Herpes simplex virus 1 (HSV-1) infects oral epitelial cells, then spreads to the nerve endings and estabilishes latency in sensory ganglia, from where it may, or may not reactivate. Diseases caused by virus reactivation include mild diseases such as muco-cutaneous lesions, and more severe, and even life-threatening encephalitis, or systemic infections affecting diverse organs. Herpes simplex virus represents the most comprehensive example of virus receptor interaction in Herpesviridae family, and the prototype virus encoding multipartite entry genes. In fact, it encodes 11-12 glycoproteins and a number of additional membrane proteins: five of these proteins play key roles in virus entry into subsceptible cells. Thus, glycoprotein B (gB) and glycoprotein C (gC) interact with heparan sulfate proteoglycan to enable initial attachment to cell surfaces. In the next step, in the entry cascade, gD binds a specific surface receptor such as nectin1 or HVEM. The interaction of glycoprotein D with the receptor alters the conformation of gD to enable the activation of gB, glycoprotein H, and glycoprotein L, a trio of glycoproteins that execute the fusion of the viral envelope with the plasma membrane. In this thesis, I described two distinct projects: I. The retargeting of viral tropism for the design of oncolytic Herpesviruses: • capable of infecting cells through the human epitelial growth factor receptor 2 (HER2), overexpressed in highly malignant mammary and ovarian tumors and correlates with a poor prognosis; • detargeted from its natural receptors, HVEM and nectin1. To this end, we inserted a ligand to HER2 in gD. Because HER2 has no natural ligand, the selected ligand was a single chain antibody (scFv) derived from MAb4D5 (monoclonal antibody to HER2), herein designated scHER2. All recombinant viruses were targeted to HER2 receptor, but only two viruses (R-LM113 and R-LM249) were completely detargeted from HVEM and nectin1. To engineer R-LM113, we removed a large portion at the N-terminus of gD (from aa 6 to aa 38) and inserted scHER2 sequence plus 9-aa serine-glycine flexible linker at position 39. On the other hand, to engineer R-LM249, we replaced the Ig-folded core of gD (from aa 61 to aa 218) with scHER2 flanked by Ser-Gly linkers. In summary, these results provide evidence that: i. gD can tolerate an insert almost as big as gD itself; ii. the Ig-like domain of gD can be removed; iii. the large portion at the N-terminus of gD (from aa 6 to aa 38) can be removed without loss of key function; iv. R-LM113 and R-LM249 recombinants are ready to be assayed in animal models of mammary and ovary tumour. This finding and the avaibility of a large number of scFv greatly increase the collection of potential receptors to which HSV can be redirected. II. The production and purification of recombinant truncated form of the heterodimer gHgL. We cloned a stable insect cell line expressing a soluble form of gH in complex with gL under the control of a metalloprotein inducible promoter and purified the heterodimer by means of ONE-STrEP-tag system by IBA. With respect to biological function, the purified heterodimer is capable: • of reacting to antibodies that recognize conformation dependent epitopes and neutralize virion infectivity; • of binding a variety cells at cell surface. No doubt, the availability of biological active purified gHgL heterodimer, in sufficient quantities, will speed up the efforts to solve its crystal structure and makes it feasible to identify more clearly whether gHgL has a cellular partner, and what is the role of this interaction on virus entry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main topic of my Ph.D. thesis is the study of nucleophilic and electrophilic aromatic substitution reaction, in particular from a mechanistic point of view. The research was mainly focused on the reactivity of superactivated aromatic systems. In spite of their high reactivity (hence the high reaction’s rate), we were able to identify and in some case to isolate -complexes until now only hypothesized. For example, interesting results comes from the study of the protonation of the supernucleophiles tris(dialkylamino)benzenes. However, the best result obtained in this field was the isolation and structural characterization of the first stables zwitterionic Wheland-Meisenheimer complexes by using 2,4-dipyrrolidine-1,3-thiazole as supernucleophile and 4,6-dinitrobenzofuroxan or 4,6-dinitrotetrazolepyridine as superelectrophile. These reactions were also studied by means of computational chemistry, which allowed us to better investigate on the energetic and properties of the reactions and reactants studied. We also discovered, in some case fortuitously, some relevant properties and application of the compounds we synthesized, such as fluorescence in solid state and nanoparticles, or textile dyeing. We decided to investigate all these findings also by collaborating with other research groups. During a period in the “Laboratoire de Structure et Réactivité des Systèmes Moléculaires Complexes-SRSMC, Université de Lorraine et CNRS, France, I carried out computational studies on new iron complexes for the use as dyes in Dye Sensitized Solar Cells (DSSC). Furthermore, thanks to this new expertise, I was involved in a collaboration for the study of the ligands’ interaction in biological systems. A collaboration with University of Urbino allowed us to investigate on the reactivity of 1,2-diaza-1,3-dienes toward nucleophiles such as amino and phosphine derivatives, which led to the synthesis of new products some of which are 6 or 7 member heterocycles containing both phosphorus and nitrogen atoms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Foodborne diseases impact human health and economies worldwide in terms of health care and productivity loss. Prevention is necessary and methods to detect, isolate and quantify foodborne pathogens play a fundamental role, changing continuously to face microorganisms and food production evolution. Official methods are mainly based on microorganisms growth in different media and their isolation on selective agars followed by confirmation of presumptive colonies through biochemical and serological test. A complete identification requires form 7 to 10 days. Over the last decades, new molecular techniques based on antibodies and nucleic acids allow a more accurate typing and a faster detection and quantification. The present thesis aims to apply molecular techniques to improve official methods performances regarding two pathogens: Shiga-like Toxin-producing Escherichia coli (STEC) and Listeria monocytogenes. In 2011, a new strain of STEC belonging to the serogroup O104 provoked a large outbreak. Therefore, the development of a method to detect and isolate STEC O104 is demanded. The first objective of this work is the detection, isolation and identification of STEC O104 in sprouts artificially contaminated. Multiplex PCR assays and antibodies anti-O104 incorporated in reagents for immunomagnetic separation and latex agglutination were employed. Contamination levels of less than 1 CFU/g were detected. Multiplex PCR assays permitted a rapid screening of enriched food samples and identification of isolated colonies. Immunomagnetic separation and latex agglutination allowed a high sensitivity and rapid identification of O104 antigen, respectively. The development of a rapid method to detect and quantify Listeria monocytogenes, a high-risk pathogen, is the second objective. Detection of 1 CFU/ml and quantification of 10–1,000 CFU/ml in raw milk were achieved by a sample pretreatment step and quantitative PCR in about 3h. L. monocytogenes growth in raw milk was also evaluated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The protein silk fibroin (SF) from the silkworm Bombyx mori is a FDA-approved biomaterial used over centuries as sutures wire. Importantly, several evidences highlighted the potential of silk biomaterials obtained by using so-called regenerated silk fibroin (RSF) in biomedicine, tissue engineering and drug delivery. Indeed, by a water-based protocol, it is possible to obtain protein water-solution, by extraction and purification of fibroin from silk fibres. Notably, RSF can be processed in a variety of biomaterials forms used in biomedical and technological fields, displaying remarkable properties such as biocompatibility, controllable biodegradability, optical transparency, mechanical robustness. Moreover, RSF biomaterials can be doped and/or chemical functionalized with drugs, optically active molecules, growth factors and/or chemicals In this view, activities of my PhD research program were focused to standardize the process of extraction and purification of protein to get the best physical and chemical characteristics. The analysis of the chemo-physical properties of the fibroin involved both the RSF water-solution and the protein processed in film. Chemo-physical properties have been studied through: vibrational (FT-IR and Raman-FT) and optical (absorption and emission UV-VIS) spectroscopy, nuclear magnetic resonance (1H and 13C NMR), thermal analysis and thermo-gravimetric scan (DSC and TGA). In the last year of my PhD, activities were focused to study and define innovative methods of functionalization of the silk fibroin solution and films. Indeed, research program was the application of different methods of manufacturing approaches of the films of fibroin without the use of harsh treatments and organic solvents. New approaches to doping and chemical functionalization of the silk fibroin were studied. Two different methods have been identified: 1) biodoping that consists in the doping of fibroin with optically active molecules through the addition of fluorescent molecules in the standard diet used for the breeding of silkworms; 2) chemical functionalization via silylation.